

HIKMICRO

Electromagnetic Flow Meter

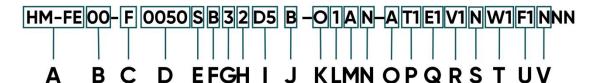
Contents

Product Selection Guide	4
Mode Code Structure	5
Table 1. Series Selection (B)	6
Table 2. Connection Selection (C)	6
Table 3. Sensor Category	7
Table 4. Magnetic Flow meter Line Size Selection (D)	9
Table 5. Electrode Material Selection (E)	10
Table 6. Grounding Selection (F)	11
Table 7. Lining Material Selection (G)	12
Table 8. Lining Material Selection for Specific Sizing	13
Table 9. Medium Temperature Selection (H)	15
Table 10. Pipeline Pressure Standards Selection (I)	15
Table 11. Flanged Connection, Line Size, Pressure Standards, Lining Material, and Applicable Temperature	17
Table 12. Flangeless (Wafer) Connection, Line Size, Lining Material, and Applicable Temperature	19
Table 13. Hygienic Connection, Line Size, Lining Material, and Applicable Temperature	∍20
Table 14. Sensor Protection Degrees Selection (J)	20
Table 15. Transmitter Structure Type Selection (K)	22
Table 16. Output Signal Selection (L)	22
Table 17. Power Supply Selection (M)	23
Table 18. Flameproof Selection (N)	23
Table 19. Accuracy Selection (O)	23

♦ HIKMICRO

Ordering Code	37
Instrument Working Environment	36
Dimensional Drawings	32
Electromagnetic Sensor for Slurry Process	31
Electromagnetic Sensor for Micro Flow Process	30
Electromagnetic Sensor for Low Conductivity Process	29
Electromagnetic Sensor for Standard Process	28
Features and Specification	28
Table 26. Sealing Gasket Material Selection (V)	27
Table 25. PIO Configuration (U)	26
Table 24. Sealing Plug Selection (T)	25
Table 23. Signal Line Length Selection for Remote Mount Transmitter (S)	24
Table 22. Sensor Appearance Processing Selection (R)	24
Table 21. Sensor Housing Material Selection (Q)	24
Table 20. Flange (ring) Material Selection (P)	23

Benefits


- Energy-saving flow measurement no pressure loss due to cross-section constriction
- Maintenance-free no moving parts
- Good corrosion resistance and abrasion resistance with multiple selection of lining and electrodes
- Low installation requirements, the front straight pipe section is not less than 5D, and the rear straight pipe section is not less than 2D (D is the inner diameter of the selected instrument).
- High accurate measurement, reaching ±0.3% of the indicated value
- Low power consumption, less than 15VA
- The transmitters are interchangeable and accuracy can be achieved without recalibration of the actual flow
- Wide measuring range, up to 1000:1
- High input impedance of the converter (>10 12 Ω), suitable for measuring low conductivity media $\geq 1 \mu S/cm$
- Flexible sensor & transmitter styles to ensure compatibility in various application

Product Selection Guide

Several sensor types, liner types, electrode materials, electrode types, grounding options are available for FE0 Series Magnetic Flowmeters to ensure compatibility with any application and installation. The following tables are listed for the guidance on selecting those types and materials.

Mode Code Structure

- A. Base Model-Magnetic Flow Meter
- B. Series
- C. Connection
- D. Line Size
- E. Electrode Material
- F. Grounding
- G. Lining Material
- H. Temp. Range
- I. Pipeline Pressure Standards
- J. Sensor Protection Rating
- K. Structure Type

- L. Output Signal
- M. Power Supply
- N. Flameproof
- O. Accuracy
- P. Flange (ring) Material
- Q. Sensor Housing Material
- R. Sensor Appearance Processing
- S. Signal Line Length for Remote Mount
- T. Sealing Plug
- U. PIO Configuration
- V. Sealing Gasket Material

The starred (\star) offerings represent the available options and the letters in the brackets of the table's title represent the mode code.

Table 1. Series Selection (B)

Code	Description
00	Standard series
01	Low conductivity series
02	Micro flow series
03	Slurry series

Table 2. Connection Selection (C)

Code	Description
F	Flanged
J	Wafer (flangeless)
К	Hygienic

Based on Table 1 and Table 2, the sensor can be divided into the following categories.

Table 3. Sensor Category

Series (B)	Connection (C)	General Characteristics
		Standard Process Sensor
		Flanged Process Connections
00	F	10mm (3/8 in.) to 1200mm (48 in.)
		Carbon Steel Housing (stainless steel housing is optional)
		Conductivity ≥ 5µS/cm, Flow Rate Range: 0.5~12m/s
		Standard Process Sensor
		Wafer (flangeless) Design
	_	Economical, compact, and lightweight alternative to flanged sensors
00	J	50mm (2 in.) to 200mm (8 in.)
		Carbon Steel Housing (stainless steel housing is optional)
		Conductivity ≥ 5µS/cm, Flow Rate Range: 0.5~12m/s
		Standard Process Sensor
		Hygienic Sensor
	К	Designed for food, beverage, and pharmaceutical applications
00		15mm (1/2 in.) to 80mm (3 in.)
		304 Stainless Steel (316 , 316L optional)
		Conductivity ≥ 5µS/cm, Flow Rate Range: 0.5~12m/s
		Low Conductivity Process Sensor
		Flanged Process Connections
01	F	10mm (3/8 in.) to 600mm (24 in.)
		Carbon Steel Housing (stainless steel housing is optional)
		Conductivity ≥ 1µS/cm, Flow Rate Range: 0.5~12m/s
		Low Conductivity Process Sensor
		Wafer (flangeless) Design
01	1	Economical, compact, and lightweight alternative to flanged sensors
01	J	50mm (2 in.) to 200mm (8 in.)
		Carbon Steel Housing (stainless steel housing is optional)
		Conductivity ≥ 1µS/cm, Flow Rate Range: 0.5~12m/s

		Low Conductivity Process Sensor						
		Hygienic Sensor						
01	K	Designed for food, beverage, and pharmaceutical applications						
O1		15mm (1/2 in.) to 80mm (3 in.)						
		304 Stainless Steel (316 , 316L optional)						
		Conductivity ≥ 1µS/cm, Flow Rate Range: 0.5~12m/s						
		Micro Flow Process Sensor						
		Flanged Process Connections						
02	F	10mm (3/8 in.) to 40mm (3/2 in.)						
		Carbon Steel Housing (stainless steel housing is optional)						
		Conductivity $\geq 5\mu S/cm$, Flow Rate Range: 0.01~12m/s						
		Micro Flow Process Sensor						
		Hygienic Sensor						
02	K	Designed for food, beverage, and pharmaceutical applications						
02	K	10mm (3/8 in.) to 40mm (3/2 in.)						
		304 Stainless Steel (316 , 316L optional)						
		Conductivity $\geq 5\mu S/cm$, Flow Rate Range: 0.01~12m/s						
		Slurry Process Sensor						
		Flanged Process Connections						
03	F	10mm (3/8 in.) to 600mm (24 in.)						
		Carbon Steel Housing (stainless steel housing is optional)						
		Conductivity $\geq 5\mu S/cm$, Flow Rate Range: 1~12m/s						
		Slurry Process Sensor						
		Wafer (flangeless) Design						
03	J	Economical, compact, and lightweight alternative to flanged sensors						
30		50mm (2 in.) to 200mm (8 in.)						
		Carbon Steel Housing (stainless steel housing is optional)						
		Conductivity $\geq 5\mu S/cm$, Flow Rate Range: 1~12m/s						

Table 4. Magnetic Flow meter Line Size Selection (D)

OOF	00J	00K	01F	01 J	01K	02F	02K	03F	03J
0010-	0050-	0015-	0010-	0050-	0015-	0010-	0015-	0010-	0050-
1200	0200	0080	0600	0200	0080	0040	0040	0600	0200

The selected flowmeter sizing is not necessarily the same as the connected pipe diameter, and should be determined according to the flow rate of medium inside pipe.

Generally speaking, the flow rate is 0.5m/s~5m/s, which is the economical flow rate, and the sensor sizing can be the same as the pipe diameter. Unless the medium is less abrasive and abrasion-resistant materials are used, it is recommended that the long-term working flow rate should not exceed 7m/s.

For fluids containing substances that are easy to adhere, precipitate, scale, etc., it is recommended to use a common flow rate of not less than 2m/s, preferably 3m/s~4m/s or above, to play a role in self-cleaning, preventing adhesion and precipitation.

For fluids with strong abrasiveness such as slurry, the common flow rate should be lower than 3m/s to reduce abrasion on the lining and electrodes.

When measuring low-conductivity media with a conductivity of $1\mu S/cm \sim 5\mu S/cm$, try to choose a low flow rate (0.5m/s $\sim 1m/s$), because the flow noise will increase with the increase of flow rate, and the output will shake.

It is suggested to select the same diameter of the sensor as the process pipe to be connected, which is very convenient for installation. However, in the following cases, the diameter of the sensor can be different from the diameter of the connected process pipeline:

- **A.** The flow rate in the pipeline is low, and the process flow rate is relatively stable. In order to meet the flow rate range requirements of the flowmeter, the flow rate is partially increased in the flowmeter part, the sensor sizing is selected to be smaller than the process pipeline diameter, and a reducer is added before and after the sensor.
- **B.** Considering the price, for large-diameter electromagnetic flowmeters, the larger the diameter, the higher the price. For the situation where the flow rate in the pipeline is low and the process parameters are stable, a smaller-diameter sensor can be selected, which can not only make the flowmeter run in a better working state, but also reduce the purchase cost.

Issues to be noted when installing reducers: In order not to affect the distribution of the velocity field too much and the measurement accuracy of the instrument, the central cone angle a of the reducer is not greater than 15°, so that the reducer can be regarded as a part of the straight pipe section.

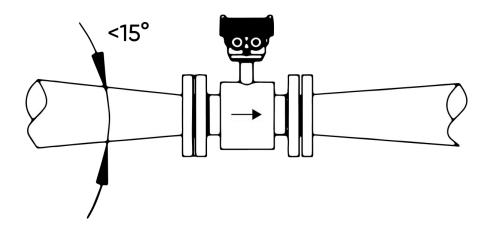


Table 5. Electrode Material Selection (E)

Code	General Characteristics	00F	00J	00K	01F	01J	01K	02F	02K	03F	03J
S	316L Stainless Steel (316L): Used for measuring water, sewage or slightly corrosive media such as inorganic and organic acids	*	*	*	*	*	*	*	*	*	*
С	Hastelloy C (HC): Resistant to oxidizing acids, such as nitric acid and mixed acid; also resistant to corrosion by oxidizing salts or other oxidants	*	*		*	*		*		*	*
L	Titanium (Ti): It is very similar to glass. It is resistant to almost all chemical media except hydrofluoric acid, fuming sulfuric acid, fuming nitric acid, and alkali	*	*		*	*		*		*	*
T:	Tantalum (Ta): It is resistant to corrosion from seawater, various chlorides and hypochlorites, oxidizing acids, organic acids, alkalis, etc., but not resistant to pure reducing acids	*	*		*	*		*		*	*
W	Tungsten Carbide: Good abrasion resistance, can be used for measuring highly abrasive media, such as slurry; can also be used to reduce the noise caused by particles impacting the electrode. E.g. paper pulp	*	*		*	*		*		*	*
Υ	Platinum-iridium Alloy: Good corrosion resistance to various acids, alkalis and salts; not resistant to aqua regia corrosion	*	*		*	*		*		*	*

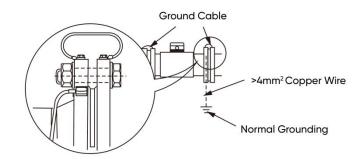


Table 6. Grounding Selection (F)

Code	Description	OOF	00J	00K	O1F	0 1J	01K	02F	02K	03F	03J
N	Dielectric Grounding (Dual Electrode)			*			*		*		
S	Standard 304 Grounding Ring	★ (DN10-DN600)	★ (DN50-DN200)		* (DN10-DN600)	★ (DN50-DN200)		★ (DN10-DN600)		★ (DN10-DN600)	★ (DN50-DN200)
А	304 Grounding Ring with Neck	★ (DN25-DN600)	★ (DN50-DN200)		★ (DN25-DN600)	★ (DN50-DN200)		★ (DN25-DN600)		★ (DN25-DN600)	★ (DN50-DN200)
В	Ground Electrode (Three Electrodes)	★ (DN10-DN1200)	★ (DN50-DN200)		★ (DN10-DN1200)	★ (DN50-DN200)		★ (DN10-DN1200)		★ (DN10-DN1200)	★ (DN50-DN200)
F	316L Standard Grounding Ring	★ (DN10-DN600)	★ (DN50-DN200)		★ (DN10-DN600)	★ (DN50-DN200)		★ (DN10-DN600)		★ (DN10-DN600)	★ (DN50-DN200)
С	Standard HC Grounding Ring	★ (DN10-DN600)	★ (DN50-DN200)		★ (DN10-DN600)	★ (DN50-DN200)		* (DN10-DN600)		★ (DN10-DN600)	★ (DN50-DN200)
L	Standard Ti Grounding Ring	★ (DN10-DN600)	★ (DN50-DN200)		★ (DN10-DN600)	★ (DN50-DN200)		★ (DN10-DN600)		★ (DN10-DN600)	★ (DN50-DN200)
Т	Standard TA Grounding Ring	★ (DN10-DN600)	★ (DN50-DN200)		★ (DN10-DN600)	★ (DN50-DN200)		★ (DN10-DN600)		★ (DN10-DN600)	★ (DN50-DN200)

The induction signal voltage of the electromagnetic flowmeter is very small and is easily affected by external noise or other electromagnetic signals. The function of the grounding ring is to form a space to shield external interference by grounding the flowmeter shell, thereby improving the measurement accuracy. (If the user uses non-metallic pipes, the grounding ring must be installed. It should be noted when ordering that the grounding ring option should be selected). Even for metal pipes, the instrument should be reliably and separately grounded, and the grounding resistance should be less than 10 ohms. The following is the installation method of the instrument under different conditions:

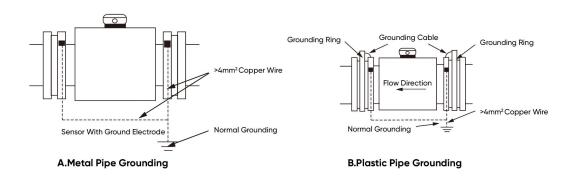


Table 7. Lining Material Selection (G)

Code	General Characteristics	OOF	00J	OOK	O1F	01J	01K	02F	02K	03F	03J
1	Neoprene (Ne) (Optional for line size 700-1200)	*									
2	Fluorinated ethylene propylene (FEP): 1. Hydrophobic and non-sticky. 2. Its corrosion resistance is second only to PFA. 3. Good resistance to negative pressure; When the negative pressure resistance requirement is high, metal mesh can be added to improve negative pressure resistance. 4. Poor abrasion resistance.	*		*	*		*	*	*	*	

	Tillerio							
3	Polytetrafluoroethylene (PTFE): 1. It is the material with the most stable chemical properties among plastics, resistant to boiling hydrochloric acid, sulfuric acid, nitric acid and aqua regia, as well as concentrated alkali and various organic solvents. Not resistant to corrosion by chlorine trifluoride, high temperature oxygen trifluoride, high flow rate liquid fluorine, liquid oxygen, and ozone. 2. Poor abrasion resistance. 3. Poor negative pressure resistance, easy to cause lining deformation or breakage, resulting in electrode leakage.	*	*	*	*	*	*	*
4	Polyurethane (PU): 1. Excellent abrasion resistance and elasticity; 2. Poor acid and alkali resistance;	*	*			*	*	*
5	Fusible polytetrafluoroethylene (PFA): 1. Good hydrophobicity and non-stickiness, strong high temperature resistance. 2. Excellent corrosion resistance, resistant to strong acid, Alkali, organic solvents and various salt solutions. 3. Good resistance to negative pressure; When the negative pressure; When the negative pressure resistance requirement is high, metal mesh can be added to improve negative pressure resistance. 4. Poor abrasion resistance.	*		*		*	*	

Table 8. Lining Material Selection for Specific Sizing

			FE01				FE02			FEO3				
		PTFE	FEP	PFA	PTFE	PU	FEP	PFA	Ne	PTFE	PU	FEP	PFA	Ne
	10		*	*			*	*				*	*	
	15		*	*			*	*				*	*	
	20	*	*	*	*		*	*		*		*	*	
Flanged	25	*	*	*	*	*	*	*		*	*	*	*	
	32	*	*	*	*	*	*	*		*	*	*	*	
	40	*	*	*	*	*	*	*		*	*	*	*	
	50	*	*	*	*	*	*	*		*	*	*	*	

	65	*	*	*					*	*	*	*	
	80	*	*	*					*	*	*	*	
	100	*	*	*					*	*	*	*	
	125	*	*	*					*	*	*	*	
	150	*	*	*					*	*	*	*	
	200	*	*	*					*	*	*	*	
	250	*	*	*					*	*	*	*	
	300	*	*	*					*	*	*	*	
	350	*	*	*					*	*	*	*	
	400	*	*	*					*	*	*	*	
	450	*	*	*					*	*	*	*	
	500	*							*	*			
	600	*							*	*			*
	50	*			*	*			*	*			
	65	*			*	*			*	*			
	80	*			*	*			*	*			
Wafer (Flangeless)	100	*			*	*			*	*			
(Fiangeless)	125	*			*	*			*	*			
	150	*			*	*			*	*			
	200	*			*	*			*	*			
Hygienic	15		*				*						
	20		*				*						
	25		*				*						
	32		*				*						
	J.												

\bigcirc	HIKMICRO
------------	----------

40	*	*			
50	*	*			
65	*	*			
80	*	*			

Note: FM00 can select corresponding lining material in all sizing range.

Table 9. Medium Temperature Selection (H)

Code	Description	OOF	00J	ООК	O1F	01 J	01K	02F	02K	03F	03J
0	AT ~ 80°C	*	*	*	*	*	*	*	*	*	*
2	AT ~ 110°C	*	*	*	*	*	*	*	*	*	*
3	AT ~ 140°C	*	*	*	*	*	*	*	*	*	*
4	AT ~ 180°C	*	*	*	*	*	*	*	*	*	*
5	-40°C ~ 80°C	*	*	*	*	*	*	*	*	*	*
6	-40°C ~ 90°C	*	*	*	*	*	*	*	*	*	*

Note: AT refers to Ambient Temperature. If the difference temperature of the medium and the ambient is lager than 15°C, it is recommended to select the low temperature as -40°C to avoid the condensation. Normally "AT" is enough.

Table 10. Pipeline Pressure Standards Selection (I)

Code	Description	OOF	001	ООК	01F	01J	01K	02F	02K	03F	03J
D1	PN6 (Default Value for DN1200 ~ DN2000)	*	*	*	*	*	*	*	*	*	*

D2	PN10 (Default Value for DN200 ~ DN1000)	*	*	*	*	*	*	*	*	*	*
D3	PN16 (Default Value for DN80 ~ DN150)	*	*	*	*	*	*	*	*	*	*
D4	PN25	*	*		*	*		*		*	*
D5	PN40 (Default Value for DN10 ~ DN65)	*	*		*	*		*		*	*
D6	PN63	*	*		*	*		*		*	*
D7	PN100	*	*		*	*		*		*	*
D8	PN160	*	*		*	*		*		*	*
D9	PN250	*	*		*	*		*		*	*
J1	JIS 5K	*	*		*	*		*		*	*
J2	JIS 10K	*	*		*	*		*		*	*
J3	JIS16K	*	*		*	*		*		*	*
J4	JIS 20K	*	*		*	*		*		*	*
J5	JIS 30K	*	*		*	*		*		*	*

C1	ANSI CLASS 150#	*	*	*	*	*	*	*
C2	ANSI CLASS 300#	*	*	*	*	*	*	*

Table 11. Flanged Connection, Line Size, Pressure Standards, Lining Material, and Applicable Temperature

110	Pressure	Length		Lining Mater	rial & Applicable	Temperature	
Line Size	(MPa)	(mm)	FEP	PFA	PTFE	PU	Ne
10					/		
15						/	
20		150					
25		150					
32	4.0						1
40			-40~140°C (-40~284°F)	-40-180°C (-40-356°F)			
50						-40~80°C	
65		200				(-40~176°F)	
80							
100	17	250					
125	1.6	250			-40~80°C		-30~70°C (-22~158°F)

♦ HIKMICRO

					/ /O 17/°F\		
150		300			(-40~176°F)		
200		350					
250		400					
300		450					
350							
400		500					
450							
500	1.0	600					
600							
700		700					
800		800					
900		900					
1000		1000					
1200		1200	/	/		/	
1400		1400					
1600	0.6	1600					
1800		1800					
2000		2000					

Table 12. Flangeless (Wafer) Connection, Line Size, Lining Material, and Applicable Temperature

Line Cine		Lining Material & Ap	pplicable Temperature	
Line Size	FEP	PFA	PTFE	PU
50				
65			-40~110°C (-40~230°F)	
80				
100	-40~140°C (-40~284°F)	-40~180°C (-40~356°F)		-40~80°C (-40~176°F)
125			-40~90°C (-40~194°F)	
150			-40~90 C (-40~194 F)	
200				

Table 13. Hygienic Connection, Line Size, Lining Material, and Applicable Temperature

	Lining Material & Applicable Temperature
Line Size	FEP
15	
20	
25	
32	-40~140°C (-40~284°F)
40	16 1.16 6 (16 2611)
50	
65	
80	

Table 14. Sensor Protection Degrees Selection (J)

Code	Description	Sensor + Integral Mount Transmitter	Sensor + Remote Mount Transmitter
А	IP65	*	*
В	IP67	*	*
С	IP68		*

Note: For remote mount transmitter, the highest protection degree is IP67.

HIKMICRO

IP65 (Spray Type): It is allowed to spray water from any direction with a tap, the water pressure is 30kPa, the water output is 12.5L/Min, and the nozzle is 3m away from the instrument.

IP67 (Immersion Type): The instrument can be completely immersed in water for a short time (1m underwater), and the duration is 30Min.

IP68 (Submersible Type): It can work underwater for a long time (5m underwater), and the maximum depth is negotiated with the manufacturer.

The protection level should be selected according to the above requirements and the actual conditions of the instrument. When no protective box is designed for outdoor use, it should be considered that the instrument above IP66 should be installed in a cool place. Avoid direct sunlight, and special attention should be paid when used in hot climate areas. Avoid direct exposure to the climate environment.

If the instrument is installed below the ground and is often flooded or the instrument is installed on the ground with high air humidity or steam exposure environment, it is advisable to use a remote mount transmitter, the sensor is IP68, and the transmitter is placed in a protective box or indoors.

Table 15. Transmitter Structure Type Selection (K)

Code	Description	OOF	00J	00K	01F	01 J	01K	02F	02K	03F	03J
0	Integral Mount	*	*	*	*	*	*	*	*	*	*
S	Remote Mount	*	*	*	*	*	*	*	*	*	*

Note: If the Temp. Range is chosen as "AT ~ 140 $^{\circ}$ C" or "AT ~ 180 $^{\circ}$ C", please choose Remote Mount as the structure Type.

Table 16. Output Signal Selection (L)

Code	Description	OOF	00J	ООК	01F	01J	01K	02F	02K	03F	03J
1	4 ~ 20 mA + pulse + MODBUS	*	*	*	*	*	*	*	*	*	*
2:	4 ~ 20 mA + pulse + MODBUS + HART	*	*	*	*	*	*	*	*	*	*

Table 17. Power Supply Selection (M)

Code	Description	OOF	001	ООК	O1F	01 J	01K	02F	02K	O3F	03J
D	DC24V (-20%~+15%)	*	*	*	*	*	*	*	*	*	*
А	220V AC (-15%~+10%), 47.5~63Hz	*	*	*	*	*	*	*	*	*	*

Table 18. Flameproof Selection (N)

Code	Description	OOF	001	ООК	O1F	01J	01K	02F	02K	03F	03J
N	Non-explosion- proof	*	*	*	*	*	*	*	*	*	*

Table 19. Accuracy Selection (O)

Code	Description	OOF	00J	ООК	01F	01J	01K	02F	02K	03F	03J
А	0.5% (Default)	*	*	*	*	*	*	*	*	*	*
B:	0.3%	*	*	*							

Note: For FE02 series, the accuracy is 0.5% when the flow rate is above 0.3m/s, and 0.5%+1mm/s when it is less than 0.3m/s;

Table 20. Flange (ring) Material Selection (P)

Code	Description	OOF	001	ООК	01F	01 J	01K	02F	02K	03F	03J
T1	Carbon Steel (Default)	*			*			*		*	
T2	304 Stainless Steel	*			*			*		*	

T4	316L Stainless	•		•		•	•	
	Steel			^		^		

Table 21. Sensor Housing Material Selection (Q)

Code	Description	OOF	00J	00K	O1F	01J	01K	02F	02K	03F	03J
E1	Carbon Steel (Default)	*	*		*	*		*		*	*
E2	304 Stainless Steel	*	*	*	*	*	*	*	*	*	*
E4	316L Stainless Steel	*	*	*	*	*	*	*	*	*	*

Note: Table 20 and Table 21 are related. The flange ring material and sensor housing material need to be the same.

Table 22. Sensor Appearance Processing Selection (R)

Code	Description	OOF	001	ООК	O1F	01J	01K	02F	02K	03F	03J
V1	Polyurethane Coating (Default)	*	*	*	*	*	*	*	*	*	*
V2	Anti-Corrosion Epoxy Coating	*	*	*	*	*	*	*	*	*	*
V3	Enhanced Anti-Corrosion Coating	*	*	*	*	*	*	*	*	*	*
V4	Polishing			*			*		*		

Table 23. Signal Line Length Selection for Remote Mount Transmitter (S)

Code	Description	OOF	001	00K	O1F	01J	01K	02F	02K	03F	03J	
------	-------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	--

N	None (Default)	*	*	*	*	*	*	*	*	*	*
L10	10 meters	*	*	*	*	*	*	*	*	*	*
L15	15 meters	*	*	*	*	*	*	*	*	*	*
L20	20 meters	*	*	*	*	*	*	*	*	*	*
L25	25 meters	*	*	*	*	*	*	*	*	*	*
L30	30 meters	*	*	*	*	*	*	*	*	*	*
L50	50 meters	*	*	*	*	*	*	*	*	*	*
LA5	150 meters	*	*	*	*	*	*	*	*	*	*

The connecting cable between the sensor and the transmitter is a special multi-shielded cable. The cable length in the model specification table refers to this cable. Its length is related to the conductivity of the medium. The maximum length is 5 times the minimum conductivity, but generally does not exceed 100m (the length exceeding the limit is negotiated with the manufacturer). The connecting cable between the sensor and the transmitter is generally required to be protected by an iron pipe during on-site installation. The cable is not allowed to be connected continuously. If an accidental break or extension occurs, please purchase a special junction box with sealant to extend it.

Table 24. Sealing Plug Selection (T)

Code	Description	OOF	001	ООК	O1F	01J	01K	02F	02K	03F	03J
W1	Nylon Cable Connector (Default)	*	*	*	*	*	*	*	*	*	*

W3	M20*1.5 Wire Conduit Interface	*	*	*	*	*	*	*	*	*	*
W4	G1/2 Conduit	*	*	*	*	*	*	*	*	*	*
W5	1/2NPT Conduit Interface	*	*	*	*	*	*	*	*	*	*
W6	Metal Cable Gland	*	*	*	*	*	*	*	*	*	*

Table 25. PIO Configuration (U)

Code	Description	OOF	001	ООК	O1F	01J	01K	02F	02K	03F	03J
F1	Frequency Output (Passive Pulse) (Default)	*	*	*	*	*	*	*	*	*	*
F2	Frequency Output (Active Pulse)	*	*	*	*	*	*	*	*	*	*
F3	Empty Pipe Alarm	*	*	*	*	*	*	*	*	*	*
F4	Contact Input	*	*	*	*	*	*	*	*	*	*
F5	Batch Control	*	*	*	*	*	*	*	*	*	*
F6	Upper Limit Alarm	*	*	*	*	*	*	*	*	*	*
F7	Lower Limit Alarm	*	*	*	*	*	*	*	*	*	*
F8	Flow Direction Alarm	*	*	*	*	*	*	*	*	*	*

Pulse output: It is pulse signal output;

Empty Pipe Alarm: When the flow meter reports an empty pipe, it outputs a switch signal;

Contact Input: Receive a switch signal to clear the accumulated value;

Batch Control: When the accumulated amount reaches the set amount, a switch signal will be output;

Upper/Lower Limit Alarm: When the flow reaches the upper and lower limits, a switch alarm signal is output;

Flow Direction Alarm: When the flow direction is reversed, a switch alarm signal is output;

Table 26. Sealing Gasket Material Selection (V)

Code	Description	OOF	001	00K	O1F	01J	01K	02F	02K	03F	03J
N	None (Default)	*	*		*	*		*		*	*
H1	NE (Neoprene)	*	*		*	*		*		*	*
H2	PTFE	*	*		*	*		*		*	*
НЗ	Metal PTFE Spiral Wound Gasket	*	*		*	*		*		*	*
H4	O-Ring			*			*		*		

Features and Specification

Electromagnetic Sensor for Standard Process

			:0		:0:	**					
	Integral Mount Transmitter	Remote Mount Transmitter	Integral Mount Transmitter			Remote Mount Transmitter					
	Flanged Senso	or	Wafer (flangeless	Hygienic Sensor							
Basic Error	0.3% or ± 0.5%	% of indicated value	•								
Diameter		other diameters I by negotiation any)	DN50~DN200 (oth be ordered by neg company)		DN15~DN80 (other diameters can be ordered by negotiation with our company)						
Electrode Materials	316L Stainless Steel, Hastelloy C , Hastelloy B , Titanium, Tantalum, Tungsten Carbide, Platinum-Iridium Alloy 316L Stainless Steel										
Grounding Method	Grounding Ring	nding, Double Electro gwith Neck; Groundin rounding Ring; Stand g	ng Electrode, Three E	ectrodes;	NA	\					
Lining Material	Neoprene (Ne), FEP, PTFE, PU,	PTFE , PU		FEP						
Ambient Temperature Range	-25 °C ~55 °C	·									
Output Signal	4 ~ 20 mA + Pul	se + MODBUS ; 4 ~ 20	0 mA + Pulse + MODE	US + HART (4mA~20	mA analog output is	active output)					
Power Supply	DC 24V (-15%	~+20%); AC 220V (-	·15%~+10%), 47~63H	Z							
Conductivity	\geq 5 μ S/cm (n	egotiate with our co	ompany for order b	elow 5µS/cm)							
Ambient Temperature Influence	< ± 0.15%/10	< \pm 0.15%/10 °C (Accuracy: 0.3%) or < \pm 0.25%/10 °C (Accuracy: 0.5%)									
Repeatability	≤± 0.1% (Accu	uracy: 0.3%) or ± 0.	16% (Accuracy: 0.5%	5)							
Analog Output Error	≤± 0.016mA										
Measuring Range Flow Rate	0.5~ 12m/s										

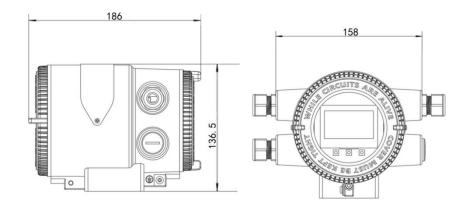
Electromagnetic Sensor for Low Conductivity Process

	Integral Mount Transmitter	Remote Mount Transmitter	Integral Mount Transmitter	Remote Mount Transmitter	Integral Mount Transmitter	Remote Mount Transmitter				
	Flanged Sensor Wafer (flange		Wafer (flangeless) Sensor	Hygienic Sensor					
Basic Error	0.5% of indicate									
Diameter	DN10~DN600 (o can be ordered with our compar		N80 (other diameters can red by negotiation with our							
Electrode Materials	316L Stainless Steel, Hastelloy C , Hastelloy B , Titanium, Tantalum, Tungsten Carbide, Platinum-Iridium Alloy 316L Stainless Steel									
Grounding Method	304 Grounding I	iding, Double Electr Ring with Neck; Gro ounding Ring; Stan	hree Electrodes;	NA						
Lining Material	Neoprene (Ne) PFA	, FEP , PTFE , PU ,	PTFE , PU		FEP					
Ambient Temperature Range	-25 °C ~55 °C									
Output Signal	4 ~ 20 mA + Puls output)	se + MODBUS ; 4 ~ 2	20 mA + Pulse + MOI	DBUS + HART (4mA-	~20mA analog outp	out is active				
Power Supply	DC 24V (-15%~+	-20%); AC 220V (-1	5%~+10%), 47~63Hz							
Conductivity	$\geqslant 1 \mu S/cm$ (negotiate with our company for order below $1 \mu S/cm$)									
Ambient Temperature Influence	<±0.25%/10 °C									
Repeatability	≤0.16%									
Analog Output Error	≤±0.016mA	≤±0.016mA								
Measuring Range Flow Rate	0.5~ 12m/s									

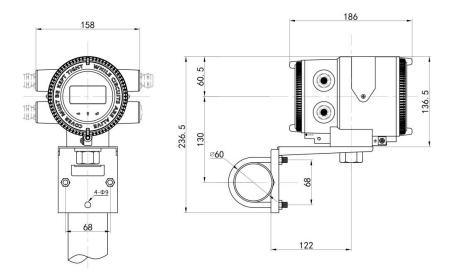
Electromagnetic Sensor for Micro Flow Process

	Integral Mount Transmitter	Remote Mount Transmitter	Integral Mount Transmitter	Remote Mount Transmitter				
	Flanged Sensor		Hygienic Sensor					
Basic Error	0.5% of indicated vo	alue (0.3~12m/s); 0.5	5%+1mm/s (0.01~0.3	m/s)				
Diameter	DN10~DN40 (other ordered by negotia company)		DN15~DN40 (othe ordered by negot company)	r diameters can be iation with our				
Electrode Materials	316L Stainless Steel, Hastelloy B , Titaniu Tungsten Carbide, I Alloy	ım, Tantalum,	316L Stainless Steel					
Grounding Method	Dielectric Grounding Electrode; Standard Ring; 304 Grounding Grounding Electrod Electrodes; Standard Ring; Standard Ti G Standard Ta Groun	d 304 Grounding g Ring with Neck; e, Three rd Hc Grounding rounding Ring;	NA					
Lining Material	Neoprene (Ne) , FE	P , PTFE , PU , PFA	FEP					
Ambient Temperature Range	-25°C~55°C							
Output Signal	4 ~ 20 mA + Pulse + analog output is ac		A + Pulse + MODBU	S + HART (4mA~20mA				
Power Supply	DC 24V (-15%~+209	%); AC 220V (-15%~-	+10%), 47~63Hz					
Conductivity	≥ 5μS/cm (negoti	ate with our compa	ny for order below !	ōμS/cm)				
Ambient Temperature Influence	<±0.25%/10 °C	<±0.25%/10 °C						
Repeatability	≤0.16%							
Analog Output Error	≤±0.016mA							
Measuring Range Flow Rate	0.01~ 12m/s							

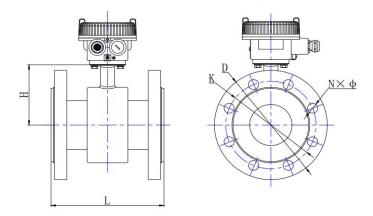
Electromagnetic Sensor for Slurry Process


	Integral Mount Transmitter	Remote Mount Transmitter	Integral Mount Transmitter	Remote Mount Transmitter
	Flanged Sensor		Wafer (flangeless) Sensor
Basic Error	0.5% of indicate	d value		
Diameter	DN10~DN600 (o can be ordered with our compa	by negotiation	DN50~DN200 (ot ordered by negot company)	her diameters can be tiation with our
Electrode Materials	316L Stainless St Carbide, Platinu		astelloy B , Titanium	, Tantalum, Tungsten
Grounding Method	Grounding Ring		ng Electrode, Three	Grounding Ring; 304 Electrodes; Standard lard Ta Grounding
Lining Material	Neoprene (Ne) PFA	, FEP , PTFE , PU ,	PTFE , PU	
Ambient Temperature Range	-25°C~55°C			
Output Signal		se + MODBUS ; 4 ~ 2 alog output is activ		DBUS + HART
Power Supply	DC 24V (-15%~+	-20%); AC 220V (-15	5%~+10%), 47~63Hz	
Conductivity	≥ 5μS/cm (neg	gotiate with our cor	npany for order bel	ow 5μS/cm)
Ambient Temperature Influence	<±0.25%/10 °C			
Repeatability	≤0.16%			
Analog Output Error	≤±0.016mA			
Measuring Range Flow Rate	1~ 12m/s			

Dimensional Drawings


Integral Mount Transmitter

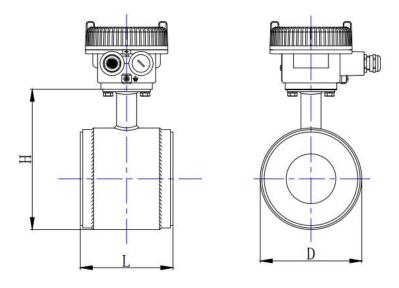
Unit: mm


Remote Mount Transmitter (With Bracket)

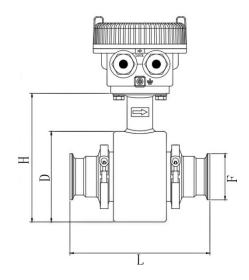
Unit: mm

Flanged Sensor

Unit: mm



		Overc	ıll Dimensi	ons (mm)	Conne	ection Dimer	nsions (mm)		
Size (mm)	Nominal Pressure (MPa)	L	D	Н	К	N (No. of holes)	Ф (Diameter)	Weight (Kg)	
10			90	84	60			7.5	
15			95	84	65			3.5	
20			105	84	75	4	14		
25		150	115	90	85			4.5	
32	4.0		140	93	100			6.5	
40			150	93	110	4	18	7.0	
50			165	100	125			9.5	
65		200	185	113	145			12	
80			200	113	160		10	15	
100	1/	250	220	126	180	8	18	17	
125	1.6	250	250	138	210			21	
150		300	285	151	240	0	22	28	
200		350	340	190	295	8	22	36	
250		400	395	222	350	10	22	49	
300		/50	445	248	400	12	22	61	
350		450	505	264	460	16	22	79	
400		500	565	299	515	16	26	99	
450			615	325	565	20	2/	121	
500		600	670	360	620	20	26	143	
600			780	412	725	20	30	187	
700	1.0	700	895	445	840	24	30	260	
800		800	1015	492	950	24	33	342	
900		900	1115	555	1050	28	33	420	
1000		1000	1230	605	1160	28	36	503	
1200	0.6	1200	1405	705	1340	32	33	666	

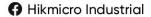


Wafer (flangeless) Sensor

Size	Nominal	Ove	erall Dimensions (m	nm)	Weight	
(mm)	Pressure (MPa)	L	D	Н	(Kg)	
50	4.0	115	96	145	5	
65	4.0	lio	116	165	6	
80		130	127	176	6.5	
100	1.6	155	147	196	9	
125	1.0	155	177	226	11	
150		185	202	251	13.5	
200	1.0	215	257	306	twenty one	

Size (mm)	Overc	ıll Dimension	s (mm)	F Chuck Outer Diameter						
Size (mm)	L	D	н	DIN32676	ISO2852	3A				
10				34	34	25				
15		0,	125.5	34	34	25				
20		84	125.5	34	/	/				
25	150			50.5	50.5	50.5				
32		93	134.5	50.5	50.5	/				
40		99	140.5	50.5	50.5	/				
50		112	153.5	64	64	64				
65	200	125	166.5	91	77.5	77.5				
80	200	137	178.5	106	91	91				

Instrument Working Environment


The instrument working environment is divided into two types: general workplace and hazardous workplace. General workplace refers to a safe place without flammable gas, explosive substances. The working environment temperature is below 65 °C , and the upper limit of the medium temperature is divided into 80 °C , 140 °C and 180 °C , where the transmitter can be selected as integral mount or remote mount (remote mount is recommended when the medium temperature is higher than 80 °C). Hazardous places refer to places where flammable gas, explosive substances exist. The working environment temperature should not be higher than 60 °C , and the medium temperature should not be higher than 80–130 °C (depending on the explosion-proof temperature level). The working temperature of the transmitter should not be higher than 65 °C . The housing and flange of the sensor body are completed by integral welding, which can meet the working environment mentioned above.

Ordering Code

		ie.	Ctr	OI	ПС	191	ne	LIC	, F	O	W I	me	Э Т Є	er s)e	lec	ETI(on	To	ac	ie
Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
Flange Wafer (flangeles Hygier Elec No grounding S: 33 304 groundi Ground electrode, 31 H	ection ed F ss) J sic K trode Me 31e WC PI Ir alle 14 groun ng ring v three ele 18 groun C groun Ti groun Ti groun	aterial SC C C Ti L To T Groun G	nding) N g S k A g F e C PFF PFF A A A A A A A A A A A A A A A A	terial e 1 p 2 J 4 5 Temp. F T=100 C ~800 C ~900 DN80 DN10 ~	Range C 0 0 2 2 2 3 4 2 2 5 5 2 5 5 5 2 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D1 D2 D3 D4 D5 D6 D7 D8 D9 C1 D1 J2 J3 J4 J5 C1 C2 P6 F1 P6	ating 5 A 7 B 7 B 1 Mount	Type Ot S utput S utput S	iignal S 1			Acce A		Sens	Sen: V1 V2 V3 V4 sor Hou Carbo 304 316L	Sign Rerr N I I I I I I I I I I I I I I I I I I	Sec W1 W3 W4 W5 W6 W6 (20 me (25 me (30 me (50 me erance ethane corrosion ced an	PIO F1 F2 F3 F4 F5 F6 F7 F8 M20 G1/2 1/2N Metc Length ount (default ters) ters) ters) ters) ters)	Sea N H1 H2 H3 H4 H4 H5 H6	Mail N None(e) NE (N) PTFE Meta O-rin ency on ency on y pipe e in input connect on the initial suit interfet built	Bolt & Nut Material N None tching Flange Material None(default) sket Material default) eoprene) I PTFE spiral wound gasket Ig (Only for Hygienic Connection) utput (passive pulse) (default) utput (active pulse) alarm at bi alarm ittion (default) it interface ace

HIKMICRO Electromagnetic Flow Meter

in HIKMICRO

hikmicro_industrial

www.hikmicrotech.com

▶ HIKMICRO Industrial